Saturday, November 9, 2019

DATA ANALYSIS, INTERPRETATION AND PRESENTATION

OVERVIEW Qualitative and quantitative Simple quantitative analysis Simple qualitative analysis Tools to support data analysis Theoretical frameworks: grounded theory, distributed cognition, activity theory Presenting the findings: rigorous notations, stories, summaries WHY DO WE ANALYZE DATA The purpose of analysing data is to obtain usable and useful information. The analysis, irrespective of whether the data is qualitative or quantitative, may: • describe and summarise the data • identify relationships between variables • compare variables • identify the difference between variables • forecast outcomes SCALES OF MEASUREMENT Many people are confused about what type of analysis to use on a set of data and the relevant forms of pictorial presentation or data display. The decision is based on the scale of measurement of the data. These scales are nominal, ordinal and numerical. Nominal scale A nominal scale is where: the data can be classified into a nonnumerical or named categories, and the order in which these categories can be written or asked is arbitrary. Ordinal scale An ordinal scale is where: the data can be classified into non-numerical or named categories an inherent order exists among the response categories. Ordinal scales are seen in questions that call for ratings of quality (for example, very good, good, fair, poor, very poor) and agreement (for example, strongly agree, agree, disagree, strongly disagree). Numerical scale A numerical scale is: where numbers represent the possible response categories there is a natural ranking of the categories zero on the scale has meaning there is a quantifiable difference within categories and between consecutive categories. When using a quantitative methodology, you are normally testing theory through the testing of a hypothesis. In qualitative research, you are either exploring the application of a theory or model in a different context or are hoping for a theory or a model to emerge from the data. In other words, although you may have some ideas about your topic, you are also looking for ideas, concepts and attitudes often from experts or practitioners in the field. QUALITATIVE ANALYSIS "Data analysis is the process of bringing order, structure and meaning to the mass of collected data. It is a messy, ambiguous, timeconsuming, creative, and fascinating process. It does not proceed in a linear fashion; it is not neat. Qualitative data analysis is a search for general statements about relationships among categories of data." Marshall and Rossman, 1990:111 Hitchcock and Hughes take this one step further: "…the ways in which the researcher moves from a description of what is the case to an explanation of why what is the case is the case." Hitchcock and Hughes 1995:295 Simple qualitative analysis • Unstructured - are not directed by a script. Rich but not replicable. • Structured - are tightly scripted, often like a questionnaire. Replicable but may lack richness. • Semi-structured - guided by a script but interesting issues can be explored in more depth. Can provide a good balance between richness and replicability. Simple qualitative analysis • Recurring patterns or themes – Emergent from data, dependent on observation framework if used • Categorizing data – Categorization scheme may be emergent or pre-specified • Looking for critical incidents – Helps to focus in on key events TOOLS TO SUPPORT DATA ANALYSIS • Spreadsheet – simple to use, basic graphs • Statistical packages, e.g. SPSS • Qualitative data analysis tools – Categorization and theme-based analysis, e.g. N6 – Quantitative analysis of text-based data

No comments:

Post a Comment